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Abstract-The ways of solving the non-linear problems of the dynamics of heat exchange processes are 
discussed. A numerical-analytical approach is suggested based on the analysis of the capabilities of physical 
and numerical experiments and analytical methods. Two numerical-analytical methods (the method of the 
‘frozen impulse-transient function’ (FITF) and the ‘step transient function’ (STF) method) are worked 
out and described, which allow one, using the adaptation concept, to construct an approximate solution 
for the non-linear problem in terms of the functional relations obtained for the linear approximation. The 
STF method is justified experimentally and the error of theoretical results does not exceed 5%. The FITF 

method also gives good results for monotonous processes. 

INTRODUCTION 

THE PROPAGATION of thermal and hydrodynamic dis- 
turbances in non-adiabatic channels is of current 
interest for solving the applied problems of control, 
reliability and safety in power and chemical engineer- 
ing, cryogenic technology and the food industry. In 
their full formulation, these problems are described by 
a non-linear system of differential mass conservation 
equations, the dimensionality of which is determined 
by the entire set of heat exchange media. 

The spatial inhomogeneity of the developing pro- 
cesses essentially complicates the solution of these 
equations, and therefore most authors have used spa- 
tially one-dimensional models when treating extended 
channels. Here, along with numerical methods for 
analyzing non-stationary phenomena, the construc- 
tion of analytical solutions becomes feasible in some 
cases. Among the indisputable advantages of the latter 
is the possibility of establishing explicit functional 
relations between effecting factors and sought vari- 
ables, which accounts for the undiminished interest in 
analytical methods [ 1, 21. 

However, the validity range of analytical ap- 
proaches is much more narrow than that of numeri- 
cal methods, especially if non-linear effects in occur- 
ring phenomena are taken into consideration. 

The present study works out a numerical-analytical 
approach which, in the present authors’ opinion, 
seems to be promising for solving non-linear transfer 
problems. This least developed method is expected 
to produce many novei interesting results, and their 
generalization is believed to eliminate the constraints 
of purely numerical and analytical methods. 

In the previous works of the present authors [3, 
4] the methods and tools for solving various linear 

problems of the dynamics of heat transfer were 
developed. The fundamental solutions (in the form of 
Green functions) obtained in these studies led to the 
unification of the search for the heat transfer system 
response to arbitrary effects, while the use of the weak 
coupling concept allowed the complex bounda~- 
value problem of conjugate heat transfer to be reduced 
to the simpler problem of solving Volterra’s second 
kind integral equations. To find quantitative results, 
effective computational algorithms are constructed. 
It is this positive (in the present authors’ opinion) 
experience which was used as the basis of the numeri- 
cal-analytical approach to solving non-linear heat 
transfer problems. 

Many means of constructing solutions for the non- 
linear problem are available, among which the asymp- 
totic and adaptive methods seem to be the most 
attractive. 

The general basis for asymptotic methods is the 
construction of solutions in the form of a series, where 
the first term reflects the linear properties of the system 
and each subsequent term brings the non-linear solu- 
tion closer to the exact one, being constructed on the 
basis of the already known preceding terms. Of the 
asymptotic methods applied for solving heat transfer 
problems, the perturbation method (the method of a 
low parameter) and the method of functional series 
(the Wiener and Volterra methods) have gained much 
recognition. 

At present, the most promising method for solving 
the non-linear problem of the dynamics of heat trans- 
fer in a channel seems to be the adaptive method, 
which is realized in the present study. 

By confining the discussion to heat transfer pro- 
cesses in normal (not emergency) situations it is poss- 
ible to talk only about variations of the coefficients in 
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NOMENCLATURE 

c T,nlTs 

CFI, C, specific heat of flow and wall, 
respectively [kJ kg- ’ Km ‘1 

D flow rate [kg s- ‘1 

d diameter [m] 

El, impulse transient function 

.f cross-sectional area [m’] 

9 specific mass of substance 
[kg mm ‘1 

h specific heat transfer surface ]m] 

hi, step transient function 
i enthalpy [kJ kg- ‘1 

Ka - K,(di,/dz) 

K, (- lL)(di/%), 

K, l/h 
n exponent on D in relation for 0 

P pressure [N rn- ‘1 

4 linear heat flux density [kW m- ‘1 

S, T,T,I(T,+Ta) 
t flow temperature [K] 

T, geC&, 

TM g&X, 
V special function 
17 spatial coordinate [ml. 

Greek symbols 
heat transfer coefficient [kW m- * K ‘1 

i dynamic deviation, Ax = x - x0 

1 hydraulic resistance coefficient of valve 

[mm”1 

:, 

dimensionless time 

wall temperature [K] 

5 dimensionless spatial coordinate 

P density [kg mm- ‘1 

r time [s]. 

Subscripts 
B flow 
eff effective 

ex exit 
exp experimental 

fr friction 
in inlet 
M wall 
S source 
theor theoretical 
tr de1 transport delay 
0 initial value. 

conservation equations or of the parameters of inte- 
gral operators associated with them; the structure 
of equations and their solutions are assumed to be 
invariant. The drift of coefficients is connected with 
their dependence on the regime parameters (fluid vel- 

ocity, heat load, pressure). If the state of the system 
varies slowly, the idea naturally suggests itself of 
attempting to employ a linear model with continu- 
ously or directly rearranging coefficients for describ- 
ing the unsteady heat transfer process. 

For a certain time interval (the smaller this is, the 
more strident are the requirements for the solution 

accuracy) the coefficients can be assumed to be 
constant. In this case the model of the process in the 
vicinity of the fixed time instant can be regarded as 
linear with ample justification. All the virtual vari- 
ations in the coefficients of the equations on the time 
interval under study are accumulated and at the 

instant of transition to the subsequent time interval 
are converted stepwise to new values, and so on. This 
method of solution is not rigorously substantiated 
and therefore the stand experiment is a very important 
factor. 

MATHEMATICAL MODEL 

Consideration will be given to an extended channel 
with the heat absorbing walls heated by an inde- 
pendent external heat flux. The assignment of the 
external heat flux does not exclude the presence of the 
third heat exchanging medium (fluid flux), but in some 

cases the possibility of substituting the equation of 
the supplementary circuit by the condition q = q(z, Z) 

can be proved. 
The mathematical model describing the process of 

unsteady heat transfer and hydrodynamics is based 

on the fundamental mass, energy and momentum con- 
servation laws written for interacting media. For for- 
mulating dynamics equations the generally accepted 
assumptions appropriate in such cases [5], will be 

introduced. 

(1) Use is made of the parametric integral relations 

averaged over the channel cross-section, which cor- 
responds well to the liquid turbulent flow character- 
istic of real regimes. 

(2) The time constant for unsteady hydrodynamic 
and thermal boundary layers is much smaller than the 
time of variation of the process parameters and can, 

therefore, be neglected. 
(3) The heat transfer agent velocity in the channel 

is much smaller than the local speed of sound, thus 
obviating the necessity to analyse acoustic effects. 

(4) The variations of potential and kinetic energies 
in the energy equation for a heat transfer agent are 

disregarded owing to their smallness as against 
enthalpy change. 

(5) The heat flux directed along the working 
medium motion is negligible in comparison with the 

radial heat flux. 
(6) The physical properties of the wall material are 

taken at the mean wall thickness temperature. 
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(7) The pressure drop along the section is negligible 
as compared with its absolute value. For this reason, 
its effect on density and enthalpy is ignored. 

Presenting the dependent variables as the sum of 
the stationary value and the dynamic deviation, and 
taking into account the statics equations, yields 

Aq-g,c, g = A&(6,-t,)+cth(A@-At) 

Here, the equation of heat propagation in the solid 
envelope of the channel is written in balance form 
and the motion equation in the form of hydraulic 
resistance. 

The solution of this system gives the space-time 
variations, AD, Ai, A0 and Ap, in the presence of 
external thermal and hydrodynamic disturbances, 
which are shown in the structural scheme in Fig. 1. 

It is seen that the non-linearities in equation (1) are 
formed by the variable flow rate D(z, z) and by the 
varying thermal physical properties of the heat trans- 
fer agent. This also applies to the system of closing 
relations which the basic equations should be aug- 
mented with : 

p = ~44 p), i = i(G P) 

a = W-i (4 p).f,(D) 

A complete model of the dynamics of heat transfer 
in the channel can be realized only with the aid of a 
computer. Two methods are possible here. One of 
them involves reducing differential equations to a sys- 
tem of algebraic equations of high dimensions with 
the use of finite difference methods. The other suggests 
that preliminary transformations be made to the orig- 
inal model, which allow the introduction of more 

Momentum equation of flow 

FIG. 1. Structural scheme of the calculation of a channel. 

economical and obvious algorithms at the expense of 
a slight decrease in accuracy. This involves analytical 
transformations resulting in integral models. Here, 
the problem of increasing the computational time step 
is solved readily and naturally, thus enabling its selec- 
tion to be guided only by the required completeness 
of the reproduction of the unsteady process curve. 
The cause and effect relationships of the phenomenon 
considered are revealed distinctly by the integral 
models via natural characteristic functions, i.e. 
impulse and step transient functions. 

Next, insight will be offered into the problems of 
finding characteristic functions and of their appli- 
cation to the approximate calculations of transient 
processes in the case of strong arbitrarily varying 
disturbances. 

LINEAR THEORY 

First it will be noted that for the majority of the 
heat exchanger parts, the total pressure in a channel 
considerably exceeds its drop along the length, and 
this allows the integration of the first three equations 
(1) separately from the last one with allowance for the 
mean temperature variations in the channel. Here, 
the motion equation is necessary for predicting the 
pressure drop over the section under consideration 
and the pressure in the boundary section is opposite to 
that for which the pressure is specified. The structural 
scheme of the problem is given in Fig. 1. The crucial 
point here is the finding of the operators of direct 
signal transformation in the element A of the scheme. 
For this element, the variations in the flow rate Din(z) 

and pressure p(z) in the channel are assumed to be 
assigned functions, while closure by natural feedback 
is achieved in the solution algorithm of the boundary- 
value problem. 

In solution it is convenient to employ the character- 
istic transient functions describing the laws of propa- 
gation of disturbances in the direction of the current. 

Analytical integration of the equations yields 
different results depending on whether there is a 
single-phase flow or a flow of a boiling heat transfer 
agent. For the sake of definiteness, the flow will be 
considered single-phase and slightly compressible. 
The latter provision implies that the flow rate in any 
channel cross-section differs little from its value on 
the original coordinate, and this difference in the 
energy equation can be neglected, having taken 
D(z, z) = Din(z) in it. This means that concentrated 
coefficients are used in the distributed model. The 
substitution of density, specific heat and heat transfer 
coefficient varying along the length by their mean 
integral values is substantiated in refs. [W3]. Thus, 
the enthalpy variations Ai(z, z) are determined from 
two energy equations at constant coefficients and 
linearized closing relations. It should be noted that 
to coordinate the dynamic deviations with the static 
increments a perturbed flow rate value should be 
taken as a coefficient in front of the derivative dAi/&. 
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The solution obtained for Ai(z, r) is employed in 
integrating the continuity and motion equations. 

The following expressions of impulse transient 
functions for the Bow enthalpy are found from the _ _ 
analytical integration of the equations : 

E,, = -T+ VZ.0+&5-qrdcl)e~’ 
M 

E,, = -__ T”$F [I-v,-(I-S,v)(e-“O”-V,,,)] 
M H 

I$, = *(l-e-s~‘-I/,+I;,,) 

K,G 
K/7 = 7 ,~ (V,,r-e-“nT). (3) 

Here, the first index of the function E;, denotes the 
exit parameter, the second index designates the inlet 
effect and special I/ functions are expressed in terms 
of the integrals of the Bessel functions [9]. 

Using the convolution theorem the following can 
be written : 

Ai(z,z) = 2 ’ 
s 

E;+(z, 7 - t, a,)Ailx&) dt (4) 
K=, 0 

where A.xK(z) are arbitrary perturbations Ai,,( 
AD(r), Aq(r) and Ap(r), and a, is the stationary vector 
of the dynamic system parameters. Having obtained, 
with allowance for solutions (3), the impulse transient 
functions of the form ED, from the first equation 
of system (I), a similar expression for the flow rate 
variations can be written 

E&z, z- t, a,)AxK(t) dr. (5) 

The analytical specification of the nuclei I?, and Ef,x 
substantially simplifies the problem of calculating 
integrals (4) and (5). 

The equation of motion within the computational 
spatial section is reduced here to the linearized 
algebraic form 

A.&n = ,f@p,n> Ai, ADI. (6) 

Relations (4)-(6), augmented with the corresponding 
boundary-value conditions, fully represent the com- 
putational structural scheme given in Fig. 1. They 
naturally track the possible variations and aug- 
mentations in a particular physical system, since the 
inlet-exit relations can be used to describe each 
element of the scheme. A disadvantage of this 
approach to the dynamic system is the necessity of 
employing the iteration for solving the boundary- 
value problem. 

This disadvantage is eliminated by transforming 
relations (4)-(6) into a system of two Volterra second 
kind integral equations, which were solved by the non- 
iterative method in ref. [4]. Also considered there was 
the application of the method of integral equations to 
solving the problem of dynamics in a steam generating 
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FIG. 2. Variations in the steam enthalpy during disturbances : 
of the inlet water temperatur? (1) (Ai = 128 kJ kg- ‘) ; of the 
ROW rate (2) (AD = -20%) ; of the external heat input (3) 

(by = - 12%). I, Calculation ; II and III, experiment. 

channel represented in the form of three sequential 
sections differing in a phase state of the heat transfer 
agent. Figure 2 presents the computational and exper- 
imental curves of transient processes which cor- 
respond to the step perturbations of enthaipy, flow 
rate and heat input. 

NON-LINEAR THEORY 

The method of ‘&Zen impulse t~~n~i~nt function 
(FITF) 

In the case of non-linear systems, the use of 
relations of type (4) becomes problematic, since the 
obtaining of the impulse transient function from non- 
linear equations or even from equations with varying 
coefficients entails insuperable mathematical diffi- 
culties. The discussion will be confined only to the 
first type of non-linearity attributable to the varying 
value D(r), as the strongest one, which enables the 
protection of the results obtained from the effect of 
other linear factors in order to most clearly present the 
main points of the adaptive method. The equations for 
predicting the how enthalpy are written assuming 
that the thermal physical properties of the flow arc 
constant : 

Here p,, = const. and tl is taken to be a function of D 
alone. At AD = const. equation (la) describes the 
system with constant parameters. The specific feature 
of the perturbation from AD(r) is the fact that, like 
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the inlet effect, it induces a change in the variables 
and parameters of the system, e.g. in D(r) and m(7). 
Therefore, its impulse function depends only on the 
form of the inlet signal AD(7), i.e. it is non-linear. For 
a single perturbation the convolution integral takes 
on the following form : 

Ai(z, z) = 
s 

’ &[z, 7 - t, D,+AD(t)]AD(t) dt. (7) 
0 

Here the stationary components of the vector u are 
omitted. The impulse characteristics belong to the 
class of finite functions, for which the concept of the 

effective duration Teff is introduced (i.e. the concept 
of such a quantity that lE(7,)/ < E for any 7, > Tefl, 

where E is a negligible number). Thus, without a great 
loss of accuracy, the lower integration limit in 
expression (7) can be replaced by ~-7~~. 

Assuming that the ‘drift’ of the non-linear impulse 

transient function parameters is rather slow on the 
interval [7 - zeK, 73, the method of the ‘frozen’ impulse 

transient function can be used. The essence of the 
method is that for each value of time 7 the non-linear 
function EiD is approximately substituted by a linear 
function determined at a certain fixed value D*. In 
the general case D * should take on the mean value of 
D(7 - TeR) and D(t). By selecting one of these limiting 

values, e.g. D* = D(7), it is possible to change over 
from equation (7) to the formula 

z 

Ai(z,7) = E,[z, ‘t- t, D(z)]AD(t) dt. (8) 

Here E,, is defined by expression (3), in which at each 
new value of 7 there occurs the rearrangement of the 
coefficients depending on D(7). In much the same 
manner integral relations are obtained for other per- 
turbation-transmitting channels. A successive aver- 
aging of the remaining coefficients of the differential 
equations in the course of dynamic calculations is 
carried out with allowance for the transient character 

of the thermal physical parameters. 
The integration in equation (8), just as in equation 

(4), can be performed analytically using, for instance, 
the spline approximation of the function AD(z), which 
is generally of arbitrary form. 

To qualitatively estimate the theoretical approx- 
imation, the physical experiment was carried out in a 
channel with a heat releasing envelope (Fig. 3). The 
channel of tubular geometry has an inner diameter of 
11 mm and a wall thickness of 3.5 mm. The embedded 
sheathed thermocouples made of 0.27 mm diameter 
thermocouple wire were placed in the initial section 

and along the channel at distances of 6.12, 12.74 and 
18.86 m from the entrance. The flow rate was mea- 
sured with the aid of a quick-response sensor of 
tachometer type. By moving the regulating device 
the flow redistribution between the experimental sec- 
tion and bypass was conducted without altering the 
total pressure in the section. 

Three forms of disturbances were considered (Fig. 

4). The experiments were performed with water at the 
following regime parameters : pw = 68&2400 kg mm * 

S -I, p = 8.6-9.2 MPa and q = 4-6 kW m- ‘. The 

inertial properties of the dynamic system are given by 
the plots of the impulse characteristics presented in 
Fig. 5. Comparison of the theoretical results obtained 
from formula (8) with the experimental data revealed 
their good agreement for the monotonous decrease or 
increase (Fig. 6). It can be seen from the plots that 
the flow rate variations for the time interval of the 
order of the effective duration of the impulse transient 
function were fairly large. 

A good accuracy can also be presented at the high- 

amplitude flow rate oscillations if the period of oscil- 
lations exceeds T.+ The conditions of the method do 
not allow its use for the process induced by short- 
duration high-amplitude disturbances. One of the 

plots in Fig. 7 is obtained at a short two-fold increase 
in the flow rate, where the duration of the impulse 
upper plateau was shorter than TeR. Since for the 
Teff time the flow rate undergoes two sign-alternating 
high-amplitude perturbations, the discrepancy be- 

tween theory and experiment is observed in the 
second part of the transient process. This discrepancy 
diminishes on a decrease in the perturbational ampli- 
tude or an increase in the perturbing impulse duration. 

The method of step transient function (STF) 
Consider another form of the convolution integral : 

Ai(z, 7) = 

5 
’ h,(z, z-t, a) dA.x(t). (9) 
0 

Unlike linear relation (4), here the vector Q is non- 
stationary and depends on the perturbing functions. 
First it will be assumed that the flow rate variation is 
the sole perturbation affecting the system. Allowing 
for this fact, equation (9) will be written in discrete 
form as : 

Ai@, 7) = -f hio,,(z, 7-7,,_4AD, 
m=I 

7K<7<7K+I. (10) 

The variation D(7) is approximated by the function 
of piecewise constant form (Fig. 8) in which the time 
step A7 = 7,+, - 7, will be assumed to be uniform for 
convenience. This condition simplifies the compu- 
tational scheme but it is not obligatory. During 

approximation a time delay by 7, can appear ; in the 
absence of this delay 7, is assumed to be equal to zero. 
The introduction of discrete variations in the system 
parameters makes it possible to construct an analyti- 
cal solution to the problem. 

By solving equations (la) on the interval [7,, 74 

under zero initial conditions, the step transient func- 
tion h,,, = h, ,(z, 7--z,, D,, 0,) is found. The 
expression obtained has the form [3] : 
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FIG. 3. Scheme of the experimental channel. 1, Heated section ; 2, distributor; 3, bypass ; 4, current leads ; 
5, tachometric flow rate pick-up; 6, pressure pick-up. Bl-B4, Regulating valves; TI--T6, embedded 

thermocouples. 
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FIG. 4. Examples of flow rate (mass flow rate) disturbances. 
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FIG. 5. The impulse transient function E;, for a single- 
phase heat transfer agent (water) in different sections of the 

channel. 

0 

7 - x 200 

2 

2 -400 

-600 
30 60 so 

T (5) 

FIG. 6. Comparison of the prediction (the FITF method) 
with experiment in the case of a smooth increase in the flow 

rate. (-) Theory; (Of, experiment. 
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t 
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7. Comparison of the prediction (the FITF method) 
experiment in the case of non-monotonous variations 
in the flow rate. (--) Theory; (Of. experiment. 
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FIG. 8. Approximation of D(T) by the step function. 

and the arguments of the V functions are 5 = 

za,hlD,c,, ‘I = (7--STBWM. 

It is seen that the values oft and rl are determined 
from the perturbed value of the flow rate D,. The 
initial value of the flow rate is then presented in terms 
of KS. 

When Ar > Tefl, the transient process due to the 
step change in the flow rate by AD, is nearly 
accomplished by the time r2. The calculations on the 
interval [z,, z3] should be continued from the achieved 
intermediate stationary state, which corresponds to 
the combination of the parameters at 7 = z2 ; this gives 
the next step transient function & = h,,,(z, 7-~~, 

D,, DJ. If AZ < T,,, account should be taken of the 
non-stationarity induced by the preceding step AD,. 
Mathematically, this leads to problem formulation 
with non-stationary initial conditions. However, a 
direct way of solving this problem turns out to be 
inefficient because of the extremely complicated 
resulting expressions to be operated at each AZ. 

A simpler but basically approximate approach will 
be considered. Relations of type (10) are constructed 
by the principle of superposition of individual com- 
ponents of the total responses, thus essentially 
simplifying the computational procedure. For pre- 
dicting the enthalpy variation Ai over the interval 
[z~, 74, the following approximate expression can be 
written : 

W,7) = h,,,,(z,z-z,,D,,D,)AD, 

+~~D,~(z,~-~*~D,,DZ)ADZ, 

72 < 7 < 73. (12) 

It should be noted that this relation is non-linear 
because of the dependence of the step transient func- 
tion parameters on the disturbance. Similarly, super- 

position can be constructed at any number of dis- 
turbances. Assuming, for instance, that the dynamic 
process is conditioned by the simultaneous change in 
the flow rate and heat input, the following expression 
can be obtained : 

W,7> = h,,,(z,7-7,,D,,D,,q,)AD, 

72 <7 <7). (13) 

As seen from this expression, in the course of re- 
arranging the step transient function parameters, 
allowance is made for the cross effect of two different 
disturbances on the resulting variation Ai. 

It follows from a more rigorous analysis conducted 
via replacing equations (1 a) by the model with lumped 
parameters (an exact analytical solution of the non- 
linear dynamic problem is obtained for it [lo]) that 
the first terms in equations (12) and (13) should con- 
tain an exponential cofactor which would correct the 
continuation of solutions h,,, and h,,,, over [7*, 7J 

with allowance for the changed conditions of the pro- 
cess. This factor does not influence the magnitude of 
total dynamic increments. The question of refining the 
approximate expressions will not be discussed here. 
Emphasis will be on the results which can be obtained 
from relations of types (12) and (13) presented in the 
full form 

W,7) = ? hio,,(z,7_7,,D,~,,D,,q,-,)AD, 

m=l 

+ f hq,mk7-7m, D,,,-,)Aq,, 

m=, 

z,<z<z,+,. (14) 

It is not difficult to track in a similar fashion the 
enthalpy perturbations of the incoming flow and the 
pressure in the channel. The corresponding solutions 
[3] have the following form 

h,, = V, 

(15) 

The computational results obtained using formula 
(14) are presented in Figs. 9 (only the flow rate is per- 
turbed) and 10 (the simultaneous perturbation of D(z) 
and q(7)). Here the results of the experimental data 
processing are shown by dots. The capabilities of the 
step transient function method appear to be greater 
compared with the ‘frozen’ impulse transient function 
method. This is evident from comparison of Figs. 9(b) 
and 7(a) and also from the results obtained in the case 
of flow rate perturbations (Fig. 9(d)), fluctuating with 



a frequency sufficient for detecting the filtrating prop- 
erties of the dynamic system. An attempt to employ 
the ‘frozen’ impulse transient function technique in 

Ai -200 - 
the last case yielded an unsatisfactory result. 

r=12.74 The STF method is not sensitive to the selection of 
a time step assigned in approximating the entrance 
effects; good results were obtained for fairly large 

-4OO- steps. This allows a reduction in the number of terms 

I I I I 
on the right-hand side of equation (12) thus in the 

30 r 
60 90 long run effecting a saving in computational oper- 

ations. Simultaneously, a part of the dynamic terms 
pass with time to the stationary part of the solution, 
Thus, at 4 = const. the following limit is carried out 
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It can be readily verified that in this case 

+ If Izin,,(=,z-z,.D,-,,D,,q)AD,,. 
m=n+ 1 

1 <n<K, 7,dr<r,+,. 

-400 

t 

The constraint z-r’, 2 TrK~n is imposed on z,. 
The same can be illustrated on the examples of the 

Ai perturbations of D(z), q(r), etc. Since the analytical 
expressions for T -+ co (actually, for T > TeK) give 
accurate increments, the method enables the com- 
putation of processes of any durations without 
ac~umuIating errors. The r.m.s. deviation from the 
experiment calculated by the formula 

I I I I 
30 60 90 

T 

FIG. 9. Variations of the flow enthalpy in the course of flow - . ,_. 
rate disturbances. (-) Formula (14) ; (o), eXpermWIt. virtually (at least in the variants considered) does not 

z -6.12 I- W 

-40 

FIG. IO. Variations of the flow enthalpy with simultaneous disturbances of the flow rate and heat input. 
(p) Formula (14) ; (O), experiment. 
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exceed 5%, so the final stationary regime is achieved 
with absolute precision. It should be noted that the 
variation in the flow rate for the variant presented in 
Fig. 9 is able to induce the enthalpy variation by 480 
kJ kg- ‘. 

CONCLUSION 

The problems of analysing dynamic heat transfer 
processes in a channel with regard for non-linear 
effects are considered. The method chosen for the 
construction of approximate analytical solutions is 
based on the adaptive approach to the problem. Use 
is made of non-linear analogues of the convolution 
integral widely applied in setting up integral models 
of linear systems. Consideration is given to the possi- 
bilities for applying analytical expressions of the tran- 
sient functions in the form of impulse and step 
characteristics which made it possible to obtain the 
simplest computational formulae for describing the 
dynamics of non-linear processes. The results of com- 
parison with experiments are given in the course of the 
presentation. It is found that at slow but appreciable 
disturbances of arbitrary form the adaptive approach 
produces positive results; here the step transient func- 
tion method is preferred. 

The presentation is conducted on the example of 
finding the enthaipy dynamics for a single-phase flow ; 
however, the flow rate dynamics can be predicted in 
the same manner which allows the application of the 
results obtained for solving the boundary-value prob- 
lem of heat transfer dynamics in a channel by integral 
methods. In calculating the two-phase section, a more 
exact piecewise linear approximation of the perturbing 
functions is employed. For this case, the correspond- 
ing analytical solutions are also obtained, and are used 

in the non-linear integral model of a steam generating 
channel. 

The problem of allowing for variations in the heat 
transfer agent thermal physical properties was not 
tackled here, since this can be done by the methods of 
mean-integral linearization in time. 
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UNE METHODE NUMERIQUE-ANALYTIQUE POUR RESOUDRE LE PROBLEME 
NON LINEAIRE DU TRANSFERT DE CHALEUR DANS LES CANAUX 

R&n&-Les faqons de resoudre les problemes non lineaires de la dynamique des mtcanismes d’echange 
thermique sont discutees. Une approche numerique-anaiytique est suggirte a partir de l’analyse des 
possibilites des experiences physiques et numtriques et des methodes analytiques. Sont d&rites deux 
methodes numeriques-analytiques (la methode de “la fonction gel&e de l’impulsion”, FITF, et la methode 
de “la fonction echelon transitoire”, STF) en utilisant le concept ~adaptation pour construire une solution 
approchee pour le probleme non lineaire par les relations fonctionnelles obtenues pour l’approximation 
lineaire. La methode STF est justifiee experimentalement et I’erreur des resultats theoriques n’excide pas 

5%. La methode FIFT donne aussi de bons resultats pour les processus monotones. 

EINE NUMERISCH-ANALYTISCHE L6SUNGSMETHODE FUR NICHTLINEARE 
PROBLEME BEI DER INSTATIONAREN WARMEUBERTRAGUNG IN KAN;ILEN 

~~ammenfa~un&Es werden die L~sungsm~gli~hkeiten nichtlinearer Probleme bei der instation~ren 
Warmeiibertragung untersucht. Ein numerisch-analytisches Nlherungsverfahren wird vorgeschlagen, das 
durch die Untersuchung der Anwendungsmoglichkeiten physikalischer und numerischer Experimente 
sowie analytischer Methoden gewonnen wurde. Es werden zwei numerisch-analytische Verfahren (“frozen 
impulse-transient function” (FITF) und “step-transient function” (STF)) beschrieben. mit denen Nahe- 
rungsl~sungen in Form van Funktion~usdr~cken. die man durch lineare Approximation erhSlt, berechnet 
werden k&men. Die STF-Methode wird experimentell iiberpriift, der Fehler liegt dabei unterhalb von 5%. 

Mit der FITF-Methode sind gute Ergebnisse fur monotone Vorglnge au erzielen 
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4MCJIEHHO-AHAJWTWIECKH$i METOA PEiUEHkuI HEJIkiHERHOti 3A&4Wi 
AMHAMHKkI TEl-lJ’IOOEMEHA B KAHAJ’IAX 

Amo~~Bxcn up pememn HenmeiiHbur 3a.q~ ~HH~MHICH 06~em1bm npoqeccos. Ha 
ocHoBe axiaw3a nosbioxmc~ek QH~HP~CKO~O H wcnemoro 3Kcnepmfema, a TaBe aHminm WCKHX 

MeTOLIOB npemarae?cn wznemic+amnmA nomon. Pa3pa6oTam H omcam ma wcneeao- 
BIiWlHTHWCKHX Mt?TOXa (“3ZtMOpO~UiHOii EiMUj’JlbCHOii Il~XOJJHOti I$yIIIIuM’ H "pa3TOHHOfi IIepeXOjl- 
HOfi @yHKUHH"), lIO3BOJlKiO~e HB OcHOBe &HKUHOHUlbHbIX cOOTHOXlIeHEii, IlOJ-Iy'ieHHbIX LJIUIR 
JIHHeiiHO~OIIp~6JlEXCeHHS,llOC.TpOHTbllpE6JlH~eHHOe ~UIeHHe HeJlHHeiiHOti3a,Ua¶H,Ht2l'lOJIb3yKKOH~eII- 
I&DO aJlaIITaWiSi.kkTon PII 06oc~o~a~3KcnepsirdeHTanbHo,norpemmcTb TeopeTHnecKiix pesynbra- 
TOB He IIPeBOcXOLUiT 5%. &In MOHOTOHHbIX lIpOl&cCOB XOpOUlHe pe3)'JIbTBTbl IWeT H MeTOIl 


